Noise Facilitates Transcriptional Control under Dynamic Inputs

نویسندگان

  • Ryan A. Kellogg
  • Savaş Tay
چکیده

Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Consensus Seeking in Distributed Multi-agent Coordinated Control

Using directed graphs, we consider consensus seeking problem when the information state of each agent is driven by exogenous inputs, random noise, or nonlinear dynamics. We show conditions under which global dynamic consensus can be achieved and provide boundedness analyses for the inconsistency of the information states between agents when communication noise or inconsistent inputs exist. Simu...

متن کامل

0 70 10 02 v 1 30 D ec 2 00 6 The role of input noise in transcriptional regulation

Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. Thi...

متن کامل

The Role of Input Noise in Transcriptional Regulation

Gene expression levels fluctuate even under constant external conditions. Much emphasis has usually been placed on the components of this noise that are due to randomness in transcription and translation. Here we focus on the role of noise associated with the inputs to transcriptional regulation; in particular, we analyze the effects of random arrival times and binding of transcription factors ...

متن کامل

Improving the velocity tracking of cruise control system by using adaptive methods

Accurate and correct performance of controller in cruise control systems is important. Hence, in such systems, controller should optimize itself against noise and probable changes in system dynamic. As a matter of fact, in this article three approaches have been conducted to-ward this purpose: MIT, direct estimation and indirect estimation. These approaches are used as controllers to track refe...

متن کامل

Measuring a Dynamic Efficiency Based on MONLP Model under DEA Control

Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. ‎‎Standard DEA models are ‎‎quite limited models‎, ‎in the sense that they do not consider a DMU ‎‎at different times‎. ‎To resolve this problem‎, ‎DEA models with dynamic ‎‎structures have been proposed‎.‎In a recent pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2015